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1. Introduction

Many problems in all branches of engineering, business and economics
can be mathematically formulated as a nonlinear programeing problem (NLP).

A NLP is an optimization problem In which some objective is minimized (or

maximized) subject to certain constraints which describe the system being

modeled. The objective may be to minimize costs, as the example in this

section shows, or to maximize some performance level. The adjective

“nonlinear” refers to the fact that the objective and constraint functions
may be nonlinear in contrast to the functions used in linear prograusning.

In this respect, linear programeing can be viewed as a special case of non-

linear programaing; although the solution procedures used in each are

considerably different.

If no constraints are present, then the NLP is termed “unconstrained”;
and can be symbolically written as

mm ~~x) (1)

I
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where f , the objective function, is a scalar function of n variables

(i.e., the vector x ) . For example, consider the design of the hypo—

thetical chemical plant shown in Figure 1. The design variables are

x1 ~ reactor temperature

* reactor pressure

x3 weight fraction of a catalyst used

x4 
weight fraction of the product
leaving the reactor.

The product x4 is an explicit function of the temperature x
1 given as

— 0.1 x~~
25 

. Suimning the component costs in Table 1 and substituting

for x
4 

yields the cost, or objective, function

f(x) 0.0318 x~~
1 
x~~

6 
+ 11430 x~~ x~~ + 228 x

3 
+ 1.5 x

2 
— 25 x?

25 
— 495 x~~

2

Table 1

COMPONENT COSTS FOR CHEMICAL PLANT

CostItem 
($/100 lb. material

__________________________ processed)

1. Reactor 0.0318 x~~
1 
x~~

6

2. Separator 11430 x~~ x~
’

3. Catalyst 228 x
3

4. Compressor 1.5 x2
5. Recycle compressor 250 (1 — x

4
)

6. Byproduct sales —3 123.2 x~~
8
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NLPs are usually solved with an algorithm which starts with a given

point (i.e., the best guess) and performs some iterative procedure until

the solution, or an approximate solution, is found. A difficult problem

in any such algorithm is termination, that is, when should the iterative

procedure be stopped? Computer programs which implement algorithms must

contain some “convergence criterion” which is testable and which if satis—

fled causes termination of the algorithm. When this happens the algorithm

is said to have “converged .”

One class of convergence criteria are those which use the iterates

~
O
~~~~~~

k
~~

k+l 
to determine whether or not convergence has been

achieved. The user is required to supply a value C (presumed small)

before the algorithm is initiated. The algorithm is termInated when

k+l k,-
~c - x

~~ ~

or
k+l k

f(x )—f(x ) I  < C

depending upon the criterion selected . The obvious flaw in the use of

• these criteria is that closeness between the successive iterates does not
• imply the iterate is close to x* , the solution to (1). The main advantage

of these criteria is that they prevent bad algorithms (ones which fail to
change the iterates very much each iteration or fail to decrease the objective

function significantly each time) from using a lot of computer time.

From the user’s point of view, it is desired to terminate only

when the iterate or its function value is acceptably close to x* (or f(x*))

Tha t is, from considerations of the physical meaning of the problem it is
reasonable to ask the user to supply a value C and for the algorithm to
terminate when either

xk _ x *I < C

or

f(x ’5_ f(x*)I ~~. C

— 4 —
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In some rare cases the value f(x*) is known even though x* is

not. Thus the fourth criterion would be implementable in this circumstance.

In general though, this is not the case and these natural convergence cri-

teria cannot be used . It is a major contribution of this paper that using

the theoretical material developed in [7] with the tools of interval arith—

metic [5], tha t these criteria can be implemented for unconstrained NLPs.

Before showing this it is instructive to consider another convergence cri-

terion which has been suggested in an attempt to bypass the lack of know-

ledge of x~

A necessary condition for a vector x~ to be the optimal solution

to an unconstrained NLP is that

f ’( x *) =Q (2)

where f’ is the gradient vector and is the zero vector. Suppose we

are solving (1) with some iterative procedure and the algorithm has gen-

erated a vector . Based on (2), we could terminate if the norm of the

gradient vector is near zero, that is, if If ‘(x ’5 1 < C  . In terms of

S

. the chemical plant example suppose = (4~ 4, 4) = (698.33, 35.738,

1.1929) and C —  0.05. Then f’(x’51 3.25 and we would not terminate.

However , now suppose we measure costs in dollars/lb rather than dollars/lOO lb
(see Table 1) , and thus define c(x) = f(x)/100 as the new cost function.

Then for the same vector x~ Ic ’(x’5 1 f ’ (x’51/100 = 0.0325 , and we

would terminate. Thus this criterion fails since the norm of the gradient

vector is dependent upon the scaling of the problem.

There are two further objections to the use of this last convergence

criterion. Whereas the user may have a good reason to accept a point which

is within C in norm from the solution vector or whose objective function
is within E. of the optimal objective function value, there is usually no
physical interpretation of a point whose gradient norm is less than C
Second, as a practical matter no one ever tries this convergence criterion

more than once. Except for simple problems, because of numerical considera—

Lions , there neoms to be a value above zero below which it is impossible to S

— 5 —
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reduce the gradient norm even with the most powerful minimization techniques.

The computer just keeps running and running .

This paper presents a solution to the termination problem for

unconstrained NLPs. In [7] the authors have shown that, under certain

conditions, an analytic expression exists for the difference f(x) — f(x*)

where x~ is the global solution over some compact region. This difference

represents how far, in terms of the objective function, the vector x is

from the optimal vector x* . However , the necessary conditions and the
analytic expression for the difference usually cannot be computed exactly.

It will be shown how interval analysis can be used , under certain conditions,

to compute an interval bound on the difference f(x) — f (x *) . In the pro-

cess an interval bound on the solution vector x* is also generated . These

bounds can be used as termination criteria .

2. Interval Analysis

Interval arithmetic [8] generalizes ordinary arithmetic to closed

intervals of the real line. Give two intervals u = [a,b] and w = [e ,d]

interval arithmetic is defined by

u + w [a + c , b + dl

u — w [a — d , b — c)

U • w [min(ac , ad , be, bd) ,
nzax(ac, ad , bc, bd)]

[a, b] . [l/d , 1/c]

where ~/w is defined only if 0 j [c,d) . The degenerate interval,

[u ,u] , is not distinguished from the ordinary number u . On the computer ,

rounded interval arithmetic [6,15] is used in place of the exact version

above to bound round off error. Rounded intervals might be slightly larger,

but they are guaranteed to contain the exact result.

Interval matrices are rectangular arrays with intervals as components.

A square interval matrix A is nonsingular if and only if all ordinary

matrices AcA are nonsingular , that is,

— 6 —
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0 1 (det A (A eA }

Usually it is not possible to compute the right—hand sid e of the above

exactly, however, an interval determinant, det A , satisfying

{det A I A C A } C c~et A (3)

can be computed. If A is nonsingular , then an interval inverse, (A) 1,
satisfies

{A
~~ I AcA} C (A)~~

Consider the interval linear system

(4)

—

where A is nonsingular . The theoretical solution set, ~2 , is

= {y {Ay = b, AcA , beb)

and an interval solution y must satisfy b C A y ; and hence contains ~
The y with smallest width [8, p. 7] is desired to minimize the difference

between À y and b . Hansen [3,4] ,  Hansen and Smith [5,6], and Oettli [101
have developed methods for solving (4).

If f:Rn
~.R is continuous, then an interval extension of f , on an

interval vector x C R~ , is an interval—valued function I which satisfies

f(x) — f(x) for all xcx
(5)

~~~L 

f ( u ) C f ( w )  for all u C w C x

Interval extensions, like interval determinants and interval inverses, are

not unique; and

{f(u) ~ucu} C 1(u) (6)

for all Uç . X . The “best ” interval extension , or united extension [8 , p. 18],

is tha t function I in which equality holds in (6). Finding good computable

— 7 —



- — ~~~~~~~~—

T—34 5

interval extensions, limiting the difference between the left— and right—

hand sides of (6), is one of the key problems in interval analysis.

Suppose h:R’~-’-R
t’ is continuously differentiable , and let x* denote

a zero of h . Assume continuous [8, p. 18] interval extensions, h~ . , of

the partial derivatives

hj.(x) = .
~2r_t (x) , i , j  = 1,. ..,n

are available on x . For U ,W - ~~ x define

= 
ij~~1’ ~~~~~~~~ ~~“~~) , i,j = l,...,n (7)

and let h’(u ,w) be the interval matrix with components h~~(u,w) . If

h ’(x ,~ ) is nonsingular in the interval sense, then h’(u,~ ) Is non—

singular for all U ,WC x ; and an interval Newton operator, , can be

defined as

N1
(w ,w) = w — h’(w ,w)~~ 

. h(w) for all w c W X  . (8)

Nickel has proven that the above interval Newton operator has some interesting

- . . properties.

Theorem 1 [9]: Suppose h’(x,x) is nonsingular. Then

• (a) Any zero x* of h in x is unique.

(b) If x* c x , then x* c N1
(x ,x) for all x c x

(c) If xr’~N1
(x,x) = 0 for any x £ x , then x* I

(d) If 11
1

(x , )  ~. for any x £ x , then x* c N
1
(x ,x)

If the hypotheses in Part (d) hold , then the existence of a zero x~ of h

in x has been verified , x~ is contained in the interval N
1

(x ,x) , and
x* is the unique zero of h in x

— 8 —
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3. Bounding Global Minima

The authors have shown [7] that , under certain conditions, an

analytic expression exists for the difference f(x) — f(x*) ; where

f:Rn~,R and x~ minimizes f over a convex compact set, S , in R
n

However, the necessary conditions and the expression for the difference

usually cannot be computed exactly. This section presents a computational

procedure, based on interval analysis, which can produce an interval bound

on the difference f(x) — f(x*) . In the process an interval bound on

x* is also generated .

Assume f is twice continuously differentiable on S , and that

the Hessian matrix , f’’(x) , is positive definite on S . Define the

gradient set

• U = {ulu = f’(x) for some x £ s}

It follows from the inverse fun~tion theorem and the convexity of S that

there exists a unique differentiable function g defined on U such that

g[f’(x)] = x for all x E S

Theorem 2 [7]: Let S’ denote the interior of S , and assume f is

twice continuously differentiable on an open set containing S . Suppose

0
x e S and

(1) f’’(x) is positive definite on S

— (ii) the set N(x°) defined as

N(x°) = {x0 — (J ~ f’’Ix° + (x — x0)g]ds)~~ f’(x
0
)~x c S}

is contained in S , that is , N(x°) ç S

0Then there exists a x* £ N(x )  such that

f ’ (x *) — , f ( x *) — inf f(x)
xcS

and x* is the unique stationary point of f in S . Furthermore , if

I

— 9 —

I 
_ _ _ _ _ _



— —~~ -~~~~~~~~~~~~ -

T—345

-~ 0 I(iii) x c S  , or
0 1

(iv) N (x)çS

then tf’(x0) £ Ii for all t £ [0 ,11 , and

f (x °) — f (x *) = fI(xO)
T 

• f ~ tf’’ [g{tf’(x°)} ]  ~ dt . f’(x0) . (9)

At f i rs t  glance the above theorem seems to be of only theoretical interest.

Hypotheses (i) , (ii) and the expression (9) for the difference f(x °) — f (x*)

usually cannot be computed exactly . However , it will be shown that interval

analysis can be used to calculate an interval version of Theorem 2.

Suppose the convex compact set S is some interval x in 1(11

and assume continuous interval extensions , I , of the second partial

derivatives of f are available on x . Let f’’(x,x) be the interval

Hessian matrix with components 1 ( x ,x) given by (7 ) .  If an interval

determinant (3) is computed , and

0 ~ f’’(x,x) , (10)

then f’’(x) is nonsingular for all x c x . Furthermore, since the

eigenvalues of a matrix are continuous functions of the matrix components

(11]; if f’’(x) is positive definite for any x c ~ and (10) holds,

then f’’(x) is positive definite on x , and hypothesis (i) of Theorem 2

is satisfied.

An interval Newton operator can be used to verify hypothesis (ii).

The definition of an interval extension (5) implies that

J~ f’’[x° + (x — x
0)s]ds £ f’’(x,x)

for all x0 , x in x . If (10) holds, then f’’(x,x) is invertible;

and the definition of an interval inverse implies that

— 10 —

~
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(f ~ f ’ ’ [x ° + (x—x °)s]ds)~~ c f ’ ’ ( x ,x)~~ (11)

for all x0 , x in x . An interval Newton operator, N2 , 
which uses the

syninetric f’’(x,x) can be defined as

12 (x°, )  x
0 

— ft~~(,)
i f ’ ( x °) . (12)

0 —
Therefore, if x £ x and

N2
(x ,x)ç.x (13)

then (11) and (12) imply that

N(x°) C N2(x ,x) C

and hypothesis (ii) is satisfied.

If (10) and (13) hold , then from Theorem 2, there exists a stationary

point x~ of f in N2
(x0,x) , and x* is the unique such point in x

Fur thermore , if f’’(x) is positive definite for some x c x , then x*

minimizes f over x . Assume now that either the point x° and/or

the interval ~2
(x°,~) lie in the interior of . Then from Theorem 2,

tf ’ (x°)cU for all tc[O ,l] , where U = {ul u — f ’(x )  for some x c )

Therefore, the definitions of an interval extension and interval inverse

imply that

f ’ ’ [g {t f ’ ( x °) ) ]  £ f ’ ’( x ,x)

and 

t f ” [g {t f ’(x 0) }] ’dt c +1”(~~~~~~ .

Using the above with (9) yields an interval bound on the difference in

function values

f(x °) - f(x*) c ~ f~ (xO) T i~~(,~)
l f’(x°) . (14)

— 11 — 
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The previous discussion has proven the following interval version

‘1! ~ 
of Theorem 2.

Corollary: Let x be some interval in R” , let x’ denote the

interior of x , and assume continuous interval extensions, I , of the

second partial derivatives of f are available on x . Suppose x° £ x

and

(1’) 0 1 t f ’ ’ (~,) and f’’(x) is positive

definite for some x £ x

(ii’) the interval Newton operator (12) is contained

in x , that is, 12
(x°,x) C x

Then there exists a x* £ I
2

(x0,~) such that

f ’( x *) ~ , f ( x *) = inf f (x )
xcx

and x* is the unique stationary point of f in x . Furthermore, if

0 —I
(iii’) x £ x , or

(iv ’) N2
(x ,x)C x ; then

f(x°) — f(x *) £ 1/2 f~ (x O)T i, , (; ;) 1. f ’ (x 0)

The right—hand side of the above is an interval bound on the difference

f (x°) — f(x*) , and the interval Newton operator (12) is an interval bound

on x~

Note that the first part of the corollary pertaining to the existence

and uniqueness of x* is similar to Parts (a) and (d) of Theorem 1 by

Nickel (let h(x) f’(x) in Theorem 1). Actually, Part (d) of Theorem 1
is stronger since it uses a tighter interva l Newton operator. This follows

from the definition of an interval extension since (5) and (7) imply that

i~~(x 0,) Cf ’’ (x ,x)

— 1 2 —
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for all £ x , and since interval arithmetic is inclusion monotonic

[8, p. 10]

f — 0— — 0 —
• 

N
1

(x ,x) C N2 (x ,x)

where

— x° — ~ ‘ ‘(x°,x)~~ f’(x°)

Therefore, the interval Newton operator N1
(x0,x) , which uses the non—

symmetric f ’ ’ ( x0,x) , might be contained in x in cases where 12
(x0,x)

• defined by (12) is not.

Consider the computations involved in implementing the corollary.

Given x in R5 
, x

0 c x , and continuous interval extensions, I

on x ; the symmetric f ’ ’( x ,x) is formed , and ci~~~ f ’ ’(x ,x) is calculated .

An interval determinant, det A , can be calculated by diagonalizing A

using partial pivoting in interval arithmetic , to obtain an upper triangular

A ; then
U n

~ ( A ) 4,, . (15)
i=1

It is easy to show that the above satisfies (3). If (10) holds, then

f’’(x) is nonsingular on x , and the interval Newton operator ~i2
(x0,x)

given by (12) is well defined. Now N2
(x0,x) can be calculated by first

solving the interval linear system

y — —f ’(x
0
)

for an interval solution y , and augmenting x° to obtain

— 0— 0 —
- - 

- N2
(x ,x) = x + y . (16)

The procedure used here to solve for y is Hansen and Smith’s Method 4 [5].

In [4] Hansen presents a refinement procedure which may improve a given

interval solution.

— 1 3 =
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If (13) holds , then N2 (x °,x) contains a stationary point x* of f

and x* is the unique such point in x . Furthermore , if f ’ ’ ( x )  is posi=
tive definite for any x £ x , then f ’ ’ ( x )  is positive definite on x
and x* minimizes f over x . The interval bound (14) on the difference

f(x°) — f (x*) holds if x0 £ and/or N 2 (x°,x) C iT 
, and is easily

obtained from the calculation of N
2
(x°,x) . This follows since (12), (14),

and (16) imply that

x~ - N 2
(X ,X) f (x ,x)~~ • f ’ ( x °) — -

and therefore

f(x
0
) - f (x *) £ - ~~ f~ (x O)T .

It cannot be overemphasized how much the usefulness of the above

results depends on the availability of good interval extensions and good

numerical methods for calculating an interval determinant and solving an

interval linear system.

4. Unconstrained Signomial Programs

Many optimization problems, especially in engineering design [13],

can be formulated as an unconstrained nonlinear program where the objective

function f , a signomial 112], can be written as

f(x) — E c U (18)
t—l i—i

Here x is a positive vec tor in R” , and the coefficients c~ and

exponents 
~~~ 

are arbitrary real numbers. If all the coefficients

are positive, then f is a posynoinial [2]; and has a unique stationary point

• which is the global minimizer. Defining the exponent vectors

a
~ 

— (a
tl~

. ..,ath
) and substituting z — log x , f can be rewritten as

f(z) E s (z)
t_ 1

‘.4
14

•_~ -~ - I T~ ::- .k_•-~~- _ 
- ~~~~~~~
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where the single—term functions, s~ , are def ined as

T
— c

~ 
exp (a

~ 
. a) ,

For an interval [u,w] , define exp([u,w]) — [exp(u) ,exp(w) ] ; and
for positive (u,w], define log([u,w]) (log(u),log(w) ]

Given a positive vector x , the corollary requires an interval

J extension of the Hessian
m

f ’ ’( z ) = E s (z) a . a T
t—]. ~ t

on z - log x . Since each s~ is monotonic, an interval extension

is easily obtained by computing s~ in interval arithmetic. Then

the definition of an interval extension , the inclusion monotonicity of
interval arithmetic, and Theorems 4.1 and 4.2 by Moore [8, p. 19] imply

that
in

—,, — —  — — Tf (z ,z) = s (z) a • a (19)
t—l ~ t

is a continuous interval extension of f’’(z) evaluated on z • The above
procedure is computationally attractive, however, different methods exist
which might yield sharper results .

As an example consider the minimum—cost design of the hypothetical

chemical plant introduced in Section 1. The procedure will be illustrated

on two intervals z — log x containing the (approximate) stationary point

1694.9\ /6.5437 \
— log x* — log ~ 35.56J = 13.5712 1 (20)

\l.l87/ \0.l7143/

obtained using Dembo ’s algorithm [1] for signomial programs. This will permit

a comparison between the interval bounds on the difference f(s°) — f(z*)
with the actual values. Note that since f’’(z*) is positive definite,

if f’’(z,z) is nonsingular in the interval sense, then f’’(s) is positive

def inite on z .

— 1 5 =
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Table 2 presents results where the interval on the original design
• variables x equals a ± 2.5 percent symmetric deviation around x* given

in (20) , that is,

— 1(677.48, 712.24]
x x~ + 0.025 x* — ([34.671, 36.450]

\(1 .l573 , 1.2167)

Substituting z — log x and computing the interval Hessian (19) yields

— — —  ([338.20. 376.31] [229.05, 249.39] 0
f’’(z,z) — ([229.05, 249.39] (434.68, 475.56] [257.74, 284.86]

0 [257.74, 284.86] [521.61, 562.261

Calculating the interva l determinant defined by (15) yields

det f’’(z,z) — [l.6802(l0~) ,  4.6l21(10~)]

Therefore, f’’(z) is positive definite on z , and the interval Newton

operator

N
2

(Z ,Z) — — z,)~~ • f ’ ( z0) (21)

is well defined . As discussed in the previous section, W2
(z°,z) is

calculated by solving the interval linear system
_,, _ _  

, 0f (z ,z) • y — f (z ) (22)

for an interval solution y and augmenting z° to obtain N2
(z°,z) = z° + y

The results for three different points a° log x
0 (where x° = x* + 0.005 x*

x* + 0.01 x~ , x* + 0.02 x*) are given in Table 2, and in each case

N2
(z°,z ) Cz  . Therefore, in each case the existence of a stationary point

z* in N2
(z ,z) has been ver ified, z* is the unique stationary point in

z and z* minimizes I over z . Furthermore, since in each case a°

lies in the interior of z , the interval bound

f(z°) — f ( z *) c — 4 fi (zO)T • (23)

holds; and since z~ is known in this example, the bound can be compared
- - with the actual value. Note that as the distance between z° and z~
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becomes larger, the interval solution y to (22) becomes wider; and hence

the interval Newton operator and the interval bound become wider.

Table 3 presents results with the same points x° and where the

interval x equals a ± 5 percent deviation around x* , that is ,

— / (660.11 , 729.61]
x — x* ± 0.05 x* — [33 .782, 37.3381

\ (1.1276 , 1.2464]

Substituting z log x and computing (19) yields

— — —  /1319.64, 395.86] [219.15, 259.81] 0
f’’(z,z) — ( [219.15, 259.81] (415.82, 497.78] [245.61, 300.06]

0 [245.61 , 300.06] [502.72 , 584.23 1

Again , f’’(z) is positive definite on z since (15) yields

detf’’(z,~) = [0.4l092(10~) ,  6.3l77(l0~)]

However , the requirement: N2(z
0
,z) C z only holds in the first case where

— log (x* + 0.005 x*) . In cases 2 and 3, the combination of the width

of z and the distance between z0 and z* cause the method to fail .

All basic interval arithmetic operations were performed using Zoltan’s

single—precision rounded interval arithmetic package [151. Other numerical

procedures yielding tighter interval extensions, or better methods for

solving an interval linear system should produce even better results.
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